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1 What is Hoschild Cohomology?

Let k be an associative, commutative, unital ring, and let A be an associative
k-algebra; that is, we require that A is a k-module, and that multiplication is
k-bilinear.

Definition 1 (Opposite and Enveloping Algebra). Define Aop to be the k-
algebra with underlying k-module A, and multiplication defined by

a ⋆ b = b · a

Define the enveloping algebra of A to be Ae := A⊗Aop, which is endowed with
the structure of a k-algebra via multiplication

a1 ⊗ b1 · a2 ⊗ b2 = a1a2 ⊗ b2b1

By an A-bimodule, we mean a a k-module M that is both a left and right
A-module, whose left and right actions commute.

Lemma 1. An A-bimodule is exactly an Ae-module.

Hochschild (Co)homology arises as the (co)homology of the Barr Resolution,
and has a nice interpretation when our Algebra A is nice over k. Before we
dive in to the precise definition of Hochschild (co)homology, I’ll say what this
is:

Definition 2 (Hochschild (Co)Homology for nice A). When A is projective
over k, we define the Hochschild (Co)Homology of an A-bimodule M to be

HHn(A,M) ∼= TorA
e

n (M,A)

HHn(A,M) ∼= ExtnAe(M,A)

[Bar Complex of A] So for instance, if we were to consider the Hochschild
Cohomology of a group ring, we would be in this instance.
When A is not projective (or flat in the case of Homology) over k, this is not
quite the case. To get the more general version, we define the Bar Complex

Definition 3. For A, k as defined earlier, define the complex C⋆ of A-bimodules:

. . . A⊗4 A⊗3 A⊗ A A 0π

Where the map π is multiplication, and the map dn : A⊗n → A⊗n−1 is defined
via

dn(a0 ⊗ . . .⊗ an+1) =
n∑

i=0

(−1)ia0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an+1
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Each degree of the chain complex becomes an A-bimodule by multiplication on
the first and last factors, under which each dn becomes a bimodule-map. These
differentials make C⋆ an exact complex, which can be seen by constructing a
section.
Then, we write B⋆(A) for the truncated complex ending at A ⊗ A, which we
call the Bar Complex of the A-bimodule A.

Definition 4 (Hochschild Chains and Cochains). Let M be an A-bimodule.
We define two new complexes

C⋆(A,M) = M ⊗Ae B⋆(A)

C⋆(A,M) = HomAe(B⋆(A),M)

which we call the Hochschild Chains and Hochschild Cochains respectively.

Remark 1. According to n-lab, these are in fact the regular tensor prod-
uct, and Hom functors in the symmetric monoidal (∞, 1)-category of chain
complexes - isn’t that cool!

Definition 5 (Hochschild (Co)Homology; for real this time). We define the
Hochschild (Co)Homology of an A-bimodule M to be

HHn(A,M) = Hn(C⋆(A,M))

HHn(A,M) = Hn(C⋆(A,M))

Remark 2. It should be obvious then that this will turn out to be Ext and
Tor when the objects A⊗n are projective (or for Homology, it’s enough to be
flat) over Ae - this need not always be the case, say when k embeds into A in
some pathological way.

As an Ae-module, we might think of A⊗n ∼= Ae ⊗k A
⊗(n−2) (compatible with

the action of Ae); then

HomAe(A⊗n,−) ∼= HomAe(A⊗ A⊗n−1,−) ∼= Homk(A,HomAe(A⊗n−1,−))

So by induction, we see that projectivity over k gives us projectivity over Ae.
For flatness, we take an exact sequence, which must be an exact sequence of
k-modules. Then tensoring by any factor preserves exactness, so repeating the
process we see that the combined tensor preserves exactness, so our module is
flat.

2



Hoschild Cohomology Matt Antrobus January 24, 2024

2 Simplicial Methods

The Bar complex actually arises from deeper structure, contained in the data
of a k-algebra. Firstly we note the map i : k → R gives rise to functors

k −mod R−mod
i∗

R⊗k−

where in fact (R⊗k −) ⊣ i∗, a property of restriction of scalars. Notably then,
the endofunctor R ⊗k −− on R − mod is a comonad. It turns out that, the
structure of a comonad is enough to define a simplicial set for each element of
an abelian category; these simplicial sets give rise to chain complexes - which
in fact are our Bar Complexes. We might then define these as our resolutions
of interest, and proceed with our theory of Homology and Cohomology. We
can however do more.

Definition 6. For a map of rings k → R, we call P ∈ R −mod ⊗-projective
when, for any diagram

P

N M 0

(where the dashed arrow indicates the map N → M is k-split) there exists a
lifting

P

N M 0

so that the diagram commutes.

This is equivalent to the following:

Proposition 1. With the setup above, A is ⊗-projective iff the map

R⊗ A → A

admits a section

Of course, by the axioms of a comonad, the co-unit of the adjunction provides
a map

R⊗ A → R⊗R⊗ A

So that all objects of the form R ⊗ A are ⊗-projective; of course, A need
only be a k-module, not even an R-module. This can be useful for explicitly
creating resolutions.
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3 Ok, why do we care?

3.1 Group Cohomology

Recall 1 (Group Cohomology). Given a group G and a ring k, we form an
associative algebra kG by endowing the free k-module on G with multiplication
from the group. Then given a kG-module, we form the “group cohomology” of
G with coefficients in M as the right derived functor of the invariants −G; this
tells us information about the group, which of course is in some sense directly
information about the algebra.

We have the following proposition:

Lemma 2. We have adjoint functors

kG−mod kG− bimod
R

L

L ⊣ R, with R exact (and so L preserves projectives).

Proof. The functor R : kG − bimod → kg − mod takes M inkG − bimod to
the kG-module M whose G action is defined by

g ⋆ m = gmg−1

L takes the kG-module M to the kG-bimodule M ⊗k kG, with left action:
g ⋆ m⊗ h = gm⊗ gh and right action m⊗ h ⋆ g = m⊗ hg it’s an interesting
exercise to show that these are in fact adjoint.

Proposition 2. We have

Hn(G;RM) ∼= HHn(kG,M)

As clearly, any kG-module M may be turned into a kG-bimodule admitting a
trivial right action, we see that Hoschild Cohomology and Group Cohomology
agree over the group ring.

Proof. As L is left adjoint to an exact functor, it preserves projectives. Now
taking P• → Z a projective resolution

Hn(G;CM) ∼= Extn(Z, CM)
∼= Hn(Hom(P•, CM))
∼= Hn(Hom(LP•,M))
∼= Extn(kG,M) ∼= HHn(kG,M)

As required.

So then, it appears that Hochschild Cohomology is a generalisation of group
cohomology, to associative algebras over a ring.
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3.2 Block Theory

Take a field k and a finite group G. Then we can write

1 = e1 + e2 + . . .+ en

where each ei has that eikG is an indecomposable algebra. Then we can write

kG =
n⊕

i=0

eikG

Which will distribute through to Hochschild Cohomology:

HHn(kG, kG) =
n⊕

i=0

HHn(kG, eikG)

In some sense, the regular cohomology ring with coefficients in k is the trivial
block here, so that Hochschild Cohomology sees more information about the
blocks than the regular group cohomology ring.

4 Examples

If A = k[x], for k a field, we can write Ae ∼= k[x, y], then we have a short exact
sequence:

0 k[x, y] k[x, y] k[x] 0
x−y π

we can see this is exact as the kernel of the map π must be of height one,
and contain an irreducible element. This is enough to show that the kernel
is generated by this element, and the kernel contains x − y. This yields a
projective resolution C•

0 k[x, y] k[x, y] 0
x−y

So that, taking an A-bimodule M ,

HHn(A,M) = Hn(C• ⊗M)

and
HHn(A,M) = Hn(Hom(C•,M))

So we can calculate in both cases:

HH0(A,M) = M/(xM −Mx) = HH1(A,M)

HH1(A,M) = {m ∈ M : mx = xm} = HH0(A,M)

and the (co)homology is zero in all other degrees.
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5 Low Degree Hochschild Cohomology

Recall, as was said earlier, we have endowed A⊗n with the structure of an
A-bimodule by multiplying on the left in the first factor, and multiplying on
the right in the last factor. This tells us that

A⊗n ∼= Ae ⊗ A⊗n−2

We’re now going to try to compute the low degree Hochschild Cohomology
groups, and see what they tell us. Take an A-bimodule M . We get a complex

. . .HomAe(A⊗4,M) HomAe(A⊗3,M) HomAe(A⊗ A,M) 0

Which we might write:

. . .HomAe(Ae ⊗ A⊗2,M) HomAe(Ae ⊗ A,M) HomAe(Ae,M) 0

which then by tensor-hom becomes:

. . .Homk(A
⊗2,M) Homk(A,M) Homk(k,M) 0

So now we just need to work out the form of the maps. We know for ϕ ∈
HomAe(Ae ⊗ A⊗n−2,M) we have that

dϕ(a0 ⊗ . . . an) = ϕ(d(a0 ⊗ . . .⊗ an))

=
n∑

i=0

(−1)iϕ(a0 ⊗ . . .⊗ aiai+1 ⊗ . . . an)

= a0a1ϕ(1⊗ a2 ⊗ . . .⊗ an−1 ⊗ 1)an + . . .

. . .+
n−1∑
i=1

(−1)ia0ϕ(1⊗ . . .⊗ aiai+1 ⊗ . . .⊗ 1)an + . . .

. . .+ (−1)na0ϕ(1⊗ a1 ⊗ . . .⊗ an−2)an−1an

We can use this to work out our Hochschild Cohomology.
Degree 0: The 0th Cohomology is the kernel of the map

d : Hom(k,M) → Hom(A,M)

defined so that

dϕ(a) = dϕ(1⊗ a⊗ 1)

= aϕ(1)− ϕ(1)a
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So then, associating Hom(k,M) with M , we see that

HH0(A,M) = {m ∈ M : am = ma for all a ∈ A}

Degree 1: The 1st Cohomology is Ker(d1)/ Image(d0). We have just calcu-
lated:

dϕ(a) = aϕ(1)− ϕ(1)a

So that maps

Image(d0) = {f : A → M : ∃a ∈ A such that f(x) = ax−xa} =: PDerk(A,M)

We sometimes call such maps “principle derivations”.
So now we only need to calculate d1.

d(ϕ(a⊗ b)) = ϕ(d(1⊗ a⊗ b⊗ 1))

= ϕ(a⊗ b⊗ 1− 1⊗ ab⊗ 1 + 1⊗ a⊗ b)

= aϕ(b)− ϕ(ab) + ϕ(a)b

So then, the condition that ϕ ∈ Ker(d1) is that

ϕ(ab) = aϕ(b) + ϕ(a)b

that is, we ask that ϕ is a derivation of A over k. The set of these is normally
denoted

Derk(A,M) := {ϕ : A → M : ϕ(ab) = aϕ(b) + ϕ(a)b}

Degree 2: Now we calculate d2(ϕ)

d2(ϕ)(a⊗ b⊗ c) = ϕ(d2(1⊗ a⊗ b⊗ c⊗ 1))

= aϕ(b⊗ c)− ϕ(ab⊗ c) + ϕ(a⊗ bc)− ϕ(a⊗ b)c

So then the 2-cocycles are functions ϕ : A⊗ A → M so that

ϕ(ab⊗ c)− ϕ(a⊗ bc) = aϕ(b⊗ c)− ϕ(a⊗ b)c

while the 2-coboundaries correspond to maps f : A⊗A → M so that there is
g : A → M with

f(a⊗ b) = ag(b)− g(ab) + g(a)b

It turns out, the 2-cocycles we just worked out correspond to certain algebra
structures on the A-bimodule A ⊕ M , and the coboundaries correspond to
“trivial extensions”; so then, each element of H2(A,M) corresponds uniquely
to one of these extensions.
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Definition 7 (Square Zero Extension). A square zero extension of A by I is
a SES of k-modules

0 I E A 0
ϕ

so that E is a k-algebra, ϕ is a k-algebra morphism, and I is an ideal of E so
that I2 = 0. This endows I with the structure of an A-bimodule, via

E/I ∼= A

We call this a Hochschild Extension when it is k-split, so that the SES is split
as a sequence of k-modules. There is an obvious notion of equivalence of these
extensions.

Theorem 1. Hochschild Extensions of A by M are in 1-1 correspondence with
HH2(A,M).

6 Cohomology Products
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